Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086929

RESUMO

In Drosophila melanogaster, loss of regenerative capacity in wing imaginal discs coincides with an increase in systemic levels of the steroid hormone ecdysone, a key coordinator of their developmental progression. Regenerating discs release the relaxin hormone Dilp8 (Drosophila insulin-like peptide 8) to limit ecdysone synthesis and extend the regenerative period. Here, we describe how regenerating tissues produce a biphasic response to ecdysone levels: lower concentrations of ecdysone promote local and systemic regenerative signaling, whereas higher concentrations suppress regeneration through the expression of broad splice isoforms. Ecdysone also promotes the expression of wingless during both regeneration and normal development through a distinct regulatory pathway. This dual role for ecdysone explains how regeneration can still be completed successfully in dilp8- mutant larvae: higher ecdysone levels increase the regenerative activity of tissues, allowing regeneration to reach completion in a shorter time. From these observations, we propose that ecdysone hormone signaling functions to coordinate regeneration with developmental progression.


Assuntos
Ecdisona/metabolismo , Regeneração/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hormônios Esteroides Gonadais/metabolismo , Discos Imaginais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Larva/crescimento & desenvolvimento , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Asas de Animais/metabolismo , Proteína Wnt1/metabolismo
2.
Development ; 148(6)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33658221

RESUMO

Regeneration of Drosophila imaginal discs, larval precursors to adult tissues, activates a regeneration checkpoint that coordinates regenerative growth with developmental progression. This regeneration checkpoint results from the release of the relaxin-family peptide Dilp8 from regenerating imaginal tissues. Secreted Dilp8 protein is detected within the imaginal disc lumen, in which it is separated from its receptor target Lgr3, which is expressed in the brain and prothoracic gland, by the disc epithelial barrier. Here, we demonstrate that following damage the imaginal disc epithelial barrier limits Dilp8 signaling and the duration of regeneration checkpoint delay. We also find that the barrier becomes increasingly impermeable to the transepithelial diffusion of labeled dextran during the second half of the third instar. This change in barrier permeability is driven by the steroid hormone ecdysone and correlates with changes in localization of Coracle, a component of the septate junctions that is required for the late-larval impermeable epithelial barrier. Based on these observations, we propose that the imaginal disc epithelial barrier regulates the duration of the regenerative checkpoint, providing a mechanism by which tissue function can signal the completion of regeneration.


Assuntos
Proteínas de Drosophila/genética , Discos Imaginais/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Receptores Acoplados a Proteínas G/genética , Regeneração/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ecdisona/genética , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Neurônios/metabolismo , Transdução de Sinais/genética
3.
Genetics ; 204(2): 703-709, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27558136

RESUMO

Damage to Drosophila melanogaster imaginal discs activates a regeneration checkpoint that (1) extends larval development and (2) coordinates the regeneration of the damaged disc with the growth of undamaged discs. These two systemic responses to damage are both mediated by Dilp8, a member of the insulin/insulin-like growth factor/relaxin family of peptide hormones, which is released by regenerating imaginal discs. Growth coordination between regenerating and undamaged imaginal discs is dependent on Dilp8 activation of nitric oxide synthase (NOS) in the prothoracic gland (PG), which slows the growth of undamaged discs by limiting ecdysone synthesis. Here we demonstrate that the Drosophila relaxin receptor homolog Lgr3, a leucine-rich repeat-containing G-protein-coupled receptor, is required for Dilp8-dependent growth coordination and developmental delay during the regeneration checkpoint. Lgr3 regulates these responses to damage via distinct mechanisms in different tissues. Using tissue-specific RNA-interference disruption of Lgr3 expression, we show that Lgr3 functions in the PG upstream of NOS, and is necessary for NOS activation and growth coordination during the regeneration checkpoint. When Lgr3 is depleted from neurons, imaginal disc damage no longer produces either developmental delay or growth inhibition. To reconcile these discrete tissue requirements for Lgr3 during regenerative growth coordination, we demonstrate that Lgr3 activity in both the CNS and PG is necessary for NOS activation in the PG following damage. Together, these results identify new roles for a relaxin receptor in mediating damage signaling to regulate growth and developmental timing.


Assuntos
Proteínas de Drosophila/genética , Discos Imaginais/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Ligação a RNA/genética , Receptores Acoplados a Proteínas G/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ecdisona/genética , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/metabolismo , Larva/crescimento & desenvolvimento , Neurônios/metabolismo , Regeneração/genética , Transdução de Sinais
4.
Curr Opin Genet Dev ; 40: 87-94, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27394031

RESUMO

The capacity for tissues to regenerate often varies during development. A better understanding how developmental context regulates regenerative capacity will be an important step towards enhancing the regenerative capacity of tissues to repair disease or damage. Recent work examining the regeneration of imaginal discs in the fruit fly, Drosophila melanogaster, has begun to identify mechanisms by which developmental progress restricts regeneration, and elucidate how Drosophila coordinates regenerative repair with the growth and development of the entire organism. Here we review recent advances in describing the interplay between development and tissue regeneration in Drosophila and identify questions that arise from these findings.


Assuntos
Proliferação de Células/genética , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Regeneração/genética , Animais , Padronização Corporal/genética , Drosophila melanogaster/crescimento & desenvolvimento , Discos Imaginais/crescimento & desenvolvimento , Cicatrização/genética
5.
Genetics ; 200(4): 1219-28, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26081194

RESUMO

Mechanisms that coordinate growth during development are essential for producing animals with proper organ proportion. Here we describe a pathway through which tissues communicate to coordinate growth. During Drosophila melanogaster larval development, damage to imaginal discs activates a regeneration checkpoint through expression of Dilp8. This both produces a delay in developmental timing and slows the growth of undamaged tissues, coordinating regeneration of the damaged tissue with developmental progression and overall growth. Here we demonstrate that Dilp8-dependent growth coordination between regenerating and undamaged tissues, but not developmental delay, requires the activity of nitric oxide synthase (NOS) in the prothoracic gland. NOS limits the growth of undamaged tissues by reducing ecdysone biosynthesis, a requirement for imaginal disc growth during both the regenerative checkpoint and normal development. Therefore, NOS activity in the prothoracic gland coordinates tissue growth through regulation of endocrine signals.


Assuntos
Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Discos Imaginais/fisiologia , Óxido Nítrico Sintase/metabolismo , Regeneração , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Ecdisona/biossíntese , Ecdisona/metabolismo , Discos Imaginais/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Larva/crescimento & desenvolvimento , Transdução de Sinais , Tórax/crescimento & desenvolvimento
6.
Curr Biol ; 20(5): 458-63, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20189388

RESUMO

Damage to Drosophila imaginal discs elicits a robust regenerative response from the surviving tissue [1-4]. However, as in other organisms, developmental progression and differentiation can restrict the regenerative capacity of Drosophila tissues. Experiments in Drosophila and other holometabolous insects have demonstrated that either damage to imaginal tissues [5, 6] or transplantation of a damaged imaginal disc [7, 8] delays the onset of metamorphosis. Therefore, in Drosophila there appears to be a mechanism that senses tissue damage and extends the larval phase to coordinate tissue regeneration with the overall developmental program of the organism. However, how such a pathway functions remains unknown. Here we demonstrate that a developmental checkpoint extends larval growth after imaginal disc damage by inhibiting the transcription of the gene encoding PTTH, a neuropeptide that promotes the release of the steroid hormone ecdysone. Using a genetic screen, we identify a previously unsuspected role for retinoid biosynthesis in regulating PTTH expression and delaying development in response to tissue damage. Retinoid signaling plays an important but poorly defined role in several vertebrate regeneration models [9-11]. Our findings demonstrate that retinoid biosynthesis in Drosophila is important for the maintenance of a condition that is permissive for regenerative growth.


Assuntos
Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Genes cdc/fisiologia , Retinoides/metabolismo , Cicatrização/fisiologia , Animais , Padronização Corporal , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Pupa , Asas de Animais
7.
Cell ; 116(3): 405-15, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-15016375

RESUMO

The FLO gene family of Saccharomyces cerevisiae includes an expressed gene, FLO11, and a set of silent, telomere-adjacent FLO genes. This gene family encodes cell-wall glycoproteins that regulate cell-cell and cell-surface adhesion. Epigenetic silencing of FLO11 regulates a key developmental switch: when FLO11 is expressed, diploid cells form pseudohyphal filaments; when FLO11 is silent, the cells grow in yeast form. The epigenetic state of FLO11 is heritable for many generations and regulated by the histone deacetylase (HDAC) Hda1p. The silent FLO10 gene is activated by high-frequency loss-of-function mutations at either IRA1 or IRA2. FLO10 is regulated by the same transcription factors that control FLO11: Sfl1p and Flo8p, but is silenced by a distinct set of HDACs: Hst1p and Hst2p. These sources of epigenetic and genetic variation explain the observed heterogeneity of cell-surface protein expression within a population of cells derived from a single clone.


Assuntos
Parede Celular/genética , Herança Extracromossômica/genética , Variação Genética/genética , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Saccharomyces cerevisiae/genética , Diferenciação Celular/genética , Parede Celular/metabolismo , Células Cultivadas , Células Clonais/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Ativadoras de GTPase , Regulação Fúngica da Expressão Gênica/genética , Inativação Gênica/fisiologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Sirtuínas/genética , Sirtuínas/metabolismo , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...